
Backtracking I: Concepts



You have seen backtracking before. Among other things it is the basis for the 
Anagram lab in CSCI 150.  We are going to devote a little time to considering 
backtracking as a programming technique.



Backtracking is a formal way to search all possible elements in the 
solution space for many problems.  It is not efficient. In many 
situations it produces exponential-time solutions to problems, so it 
breaks down as the problem size becomes large.  Often there are 
better solutions.  However, backtracking does have some advantages.  
It is fairly general and can be applied in many situations.  It is routine; 
backtracking algorithms all look the same, so once you understand the 
technique you can apply it quickly and reliably. There are situations 
where the problem size is known to be small and coding time is more 
important than runtime.  In these situations backtracking can be a 
good solution.



Backtracking only applies to certain kinds of problems.  It requires the 
problem to have a solution that can be built one step at a time.  Such a 
problem has a solution space that forms a tree:

...

start

first step

second step

etc.



For example, back in that 150 Anagrams lab, each step consisted of 
trying to make a word out of the remaining letters we had.  To find 
the options for this step we walked through the words of a dictionary, 
asking if each word could be made out of the remaining letters.

We might use backtracking to find a path through a maze. At each 
step we look at our current location and we have four options: 
moving forwards, backwards, left or right.



A famous problem often solved with backtracking is the "n-Queens" 
problem.  Its name comes from a common expression of the problem 
in terms of chess pieces, but we can state it easily as "Find n squares 
on an nxn grid so that no two are in the same row, the same column, 
or the same diagonal."  We can think of step 1 as choosing  a square 
for the first column, step 2 as choosing a square for the second 
column, and so forth.  Since each column has n squares, there are n 
choices for each step.  



Many problems are not amenable to backtracking.  Sorting a list or 
grouping data into clusters don't lend themselves to this step-by-step 
solution.  But when a problem does fit this model backtracking is at 
least one way you might set about looking for a solution.



...

Backtracking peforms a depth-first search through the solution 
space. It tries the first possible value for the first step, then the first 
possible value for the second, and so forth, walking down the left-
most branch of the tree -- that is the path in green:   

If that gets us to a solution, we are good.



If that does not get us to a solution, backtracking undoes the last 
decision we made.  In this case that decision was to use the first 
possible value in step 3. We move on to the next possible value in step 
3:

...



Suppose this still hasn't found a solution and that we are out of 
options for step 3:

...

This means our initial choice of the first option for step 2 must have 
been a mistake. We backtrack to that step and try the next choice:



We repeat the algorithm walking down this new branch of the tree, 
trying 

...

then

If neither of these work we go all the way  back to step 1 and 
choose the next option.  This continues until we have found a 
solution or explored all options.

...



Backtracking is never very efficient, but it helps if we can at least 
determine whether a partial solution is feasible, i.e., can potentially 
be extended to a complete solution.   If a partial solution is not 
feasible there is no point in walking down the tree for it.  This lets us 
prune some useless paths from the tree and saves some time.



For example, remember the n-Queens problem -- finding n squares 
on an nxn grid with no two on the same row, column or diagonal.  
We build the solutions by finding a square for each column.  Suppose 
we have already  chosen the first square for the first column and the 
third square for the second column:



For the third column the first square is not feasible since it would be 
in the same row as the first column; the second square is not feasible 
since it is on the  same diagonal as the choice for the second column, 
and so forth.  We would need to go down to at least square 5 of the 
third column to get a feasible entry.   Our backtracking algorithm 
checks feasibility and only extends feasible partial solutions.



Here is pseudocode for the basic backtracking algorithm:
backtrack(n, sofar)

; n, and possibly other parameters, describe the problem
; sofar is a list of the steps making up the current partial solution
; this returns either a complete solution or null as a failure signal

if sofar is a complete solution, return sofar
for each possible value v for the next step:

if adding v to sofar makes a feasible partial solution
res = backtrack(n, (cons v sofar))
if res is not null, return res
if res is null go to the next value of v

if adding v to so far is not feasible, go to the next value of v
If the possible values of v are exhausted, 

return null as a failure signal



There are several ways to turn this pseudocode into Scheme code.  The 
only issue is  how to represent the for-loop through possible values.  
Here is a simple solution:

(define backtrack (lambda (n curr sofar)
; returns the first extension of sofar into a solution with
; curr or higher as the value for the current step
(cond

[<sofar is a complete solution> sofar]
[<curr is out of the range of possible values for this step> null]
[(feasible  curr sofar)

(let ([res (backtrack n <first value for next step> (cons curr sofar))])
(if (null? res)

(backtrack n  <value after curr> sofar)
res))

[else (backtrack n <value after curr> sofar)]))



One common variant of the backtracking algorithm is to find not one, 
but all solutions to a particular problem. With a procedural language 
this is a simple change: instead of returning the solution we print it, 
and backtrack to the next solution.  To find all solutions functionally 
we will build up lists of solutions and have the backtracking function 
return a list of all solutions it finds.



(define allsols (lambda (n)
(letrec ([backtrack (lambda (curr sofar)

; backtrack returns all solutions that extend sofar with value curr or  higher
(cond

[<sofar is a complete solution> (list sofar) ]
[<curr is out of the range of possible values for this step> null]
[(feasible  curr sofar)

(let ([res (backtrack n <first value for next step> (cons curr sofar))]
[res2 (backtrack n  <value after curr> sofar)])

(append res1 res2)
[else (backtrack n <value after curr> sofar)])])

(backtrack <first value> null)))


